

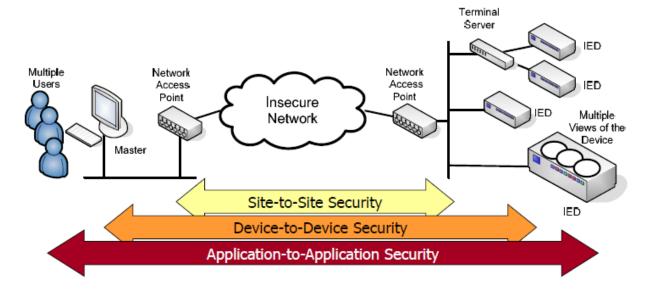
Deploying Secure DNP3 (IEEE 1815) What You Need to Know

Technology Updates for Key Management

Joe Stevens

Marketing Manager

jstevens@trianglemicroworks.com



Agenda

- Why Secure Authentication?
 - Benefits and Justification
- Equipment Considerations
 - Gateways/RTUs/Terminal Servers
- Cyber Security Architecture
 - Where Does SA Fit?
 - Multi-User Systems
 - Key Management
- Technology Updates
 - DNP Authority
 - DNP3 Key Management Protocol (DKMP)

Why Secure Authentication?

- User Authentication
 - Each critical operation is authenticated
 - Addresses threat of spoofing, modification, and replay
 - Not just about cyber-security but also operational reliability
- Legacy Support Requirements
 - Must have low overhead on devices
 - Support low bandwidth, serial, and IP networks
- TLS Encryption Can Be Added for DNP3 IP Networks

Benefits of DNP3 Secure Authentication

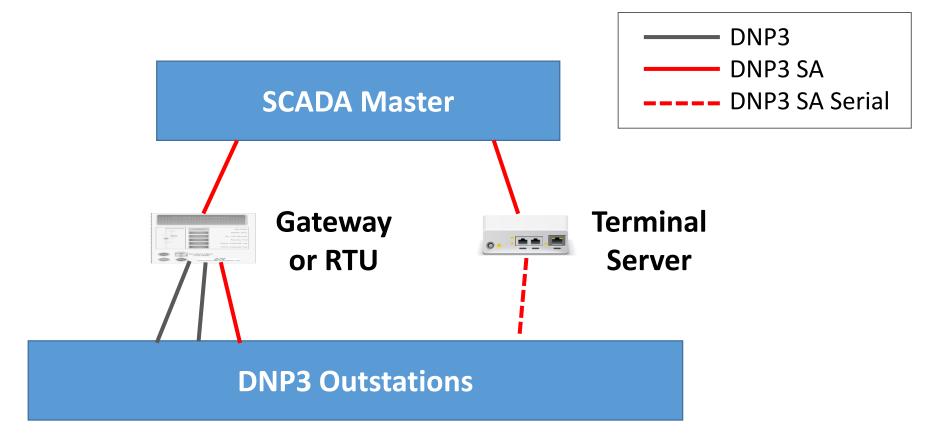
Increased security <u>and</u> reliability

- End to end cyber-security at the application layer goes beyond TLS or VPN
- Can help meet authentication requirements of NERC CIP
- Role Based Access Control addresses operational requirements of utilities

Can be implemented within existing infrastructure

Security upgrade path without upgrading existing infrastructure or legacy devices

Equipment Considerations


Are there devices that support Secure Authentication?

Short answer: Yes, a wide variety

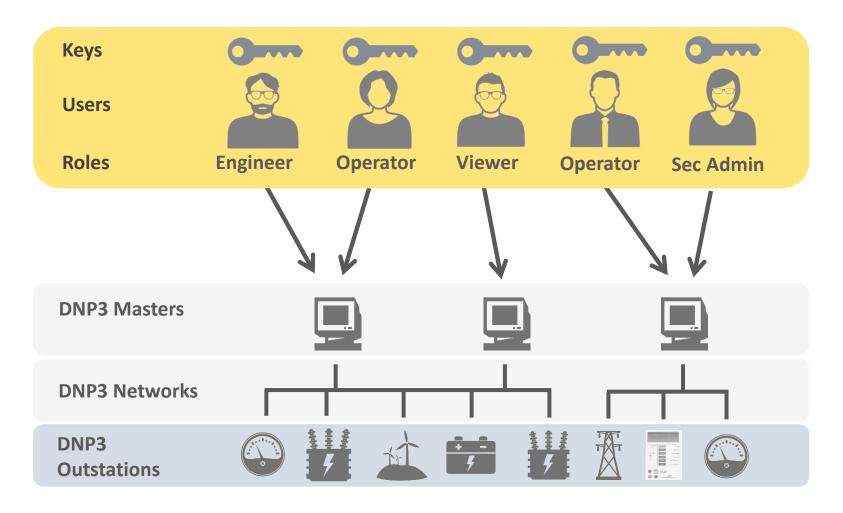
Long answer: Stop by the DNP booth downstairs!

- What challenges are there for utilities and vendors?
 - Determining a migration path to DNP3 SA
 - Operational adjustments (especially for role based access)
 - Planning for key management in the future
 - Vendors not many challenges now after 10 years

Equipment Considerations

DNP3 SA to DNP3
without SA
Or mapping of
DNP3 SA users

Supports IP to Serial and vice versa


Multi-User Systems

- Role-Based Access Control (IEC 62351-8)
 - Each user has a role (Engineer, Operator, Security Admin)
- Privileges are based on the role
 - Standard roles have predefined privileges
 - Custom roles can be defined for each organization

		Privileges						
		View	Read	Reporting	File Read	File Write	Control	Security
User Roles	Viewer	~		✓				
	Operator	~	~	~			~	
	Engineer	~	~	✓		~		
	Security Admin	~	~			~	~	~
	Security Auditor	~	~	✓	~			

Multi-User Systems

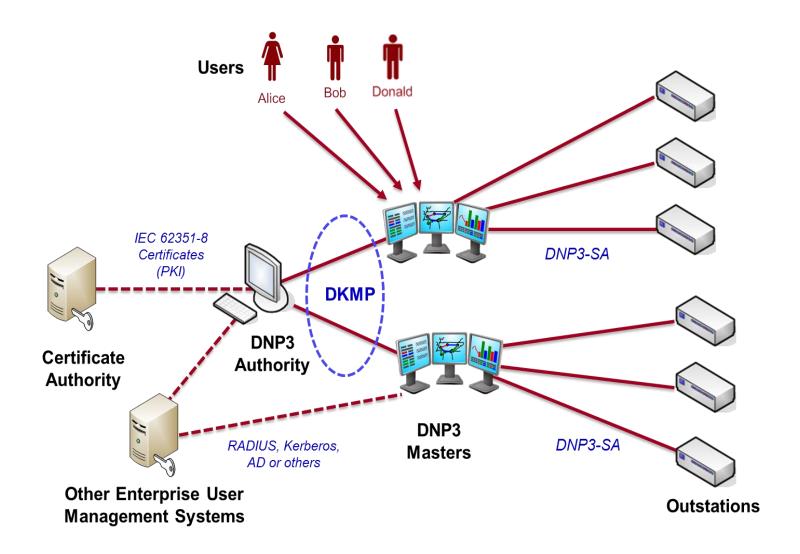
- Users can be added to the system with specific roles
- Roles determine which privileges they have

Benefits of Role Based Access

- Operational Side
 - User access based on roles within organization
 - Greater reliability and safety by reducing risk of unintentional operations
 - Support for multiple organizations that share assets
- Security Aspects
 - Capability to log operations by DNP3 Master
 - Reduces risk of malicious attacks from within organization
 - Key disclosure has lower risk than a "single user" system

Key Management Dilemma

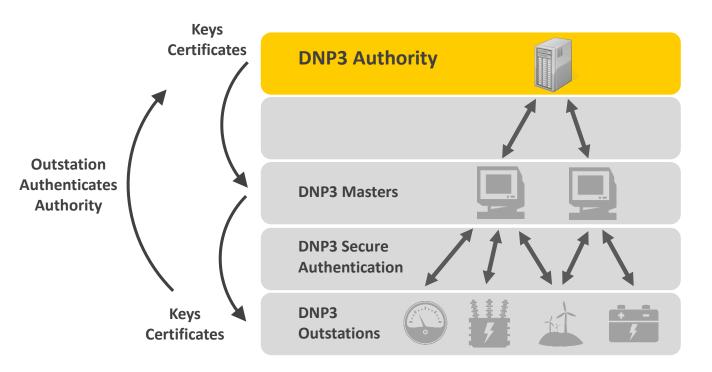
So many devices, users, keys...


- How can users be added, removed, or modified?
- Who manages the updates?
- How do you update keys securely?
- How frequently do you need to update keys?
- What is the cost?
- Can this be automated?

Technology Updates

Updates to Secure Authentication

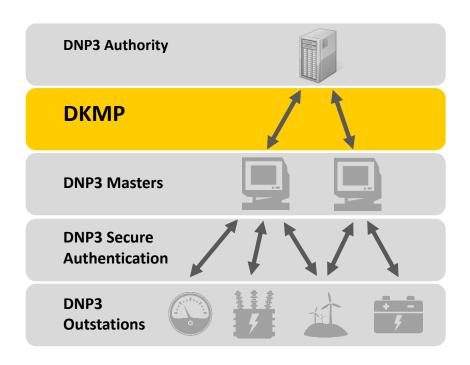
- IEEE Std[™] 1815.1 Standard
- Security must evolve
- Backward compatibility is major goal
- Current objective: how will remote key management be standardized?
 - Much of the functionality exists in DNP3 now
 - DNP3 Authority evolving
 - Proposed key management interface for Masters


Cyber Security Architecture

DNP3 Authority

Central application across multiple DNP3 networks

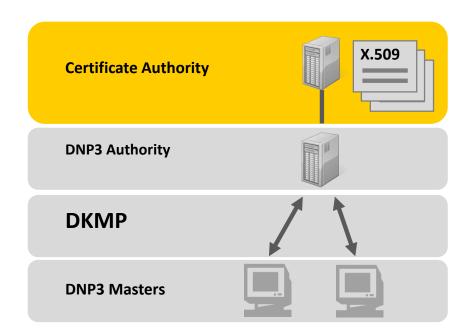
- Interfaces to DNP3 Masters
- Adds, removes, and updates users
- Sends user keys/certificates to remote devices via Master



Enables remote key management

DNP3 Key Management Protocol (DKMP)

DKMP is a proposed specification*


- Uses TLS over TCP Sockets
- Symmetric or asymmetric cryptography
- Synchronizes Users
- Updates Users
- Changes Keys

^{*}Started as part of EPRI DNP3 demonstration in 2014

Certificate Authority

- Asymmetric cryptography
- Provides digitally signed certificates
- Interfaces to DNP3 Authority
- Supports X.509 certificates with IEC 62351-8 defined extensions:

- User Role
- Lifetime of User Rights
- Operation (add, delete, change)

Why Key Management?

Operational Benefits

- Lower cost to update keys in remote devices
- User access is based on operational requirements
- Add and remove users as organization changes
- Users are synched with central User Management System

Security Benefits

- Change keys quickly after an unintended key disclosure
- Reduced risk of key disclosure versus manual distribution
- Users can be removed as they leave the organization

Deploying Secure DNP3 (IEEE 1815) What You Need to Know

Joe Stevens

Marketing Manager

Triangle MicroWorks

jstevens@TriangleMicroWorks.com